
Limited Memory Block Krylov Subspace Optimization for

Computing Dominant Singular Value Decompositions

Xin Liu∗ Zaiwen Wen† Yin Zhang‡

March 22, 2012

Abstract

In many data-intensive applications, the use of principal component analysis (PCA) and other related
techniques is ubiquitous for dimension reduction, data mining or other transformational purposes. Such
transformations often require efficiently, reliably and accurately computing dominant singular value de-
compositions (SVDs) of large unstructured matrices. In this paper, we propose and study a subspace
optimization technique to significantly accelerate the classic simultaneous iteration method. We analyze
the convergence of the proposed algorithm, and numerically compare it with several state-of-the-art SVD
solvers under the MATLAB environment. Extensive computational results show that on a wide range of
large unstructured matrices, the proposed algorithm can often provide improved efficiency or robustness
over existing algorithms.

Keywords. subspace optimization, dominant singular value decomposition, Krylov subspace, eigen-

value decomposition

1 Introduction

Singular value decomposition (SVD) is a fundamental and enormously useful tool in matrix computations,

such as determining the pseudo-inverse, the range or null space, or the rank of a matrix, solving regular or

total least squares data fitting problems, or computing low-rank approximations to a matrix, just to mention a

few. The need for computing SVDs also frequently arises from diverse fields in statistics, signal processing,

data mining or compression, and from various dimension-reduction models of large-scale dynamic systems.

Usually, instead of acquiring all the singular values and vectors of a matrix, it suffices to compute a set of

dominant (i.e., the largest) singular values and their corresponding singular vectors in order to obtain the

most valuable and relevant information about the underlying dataset or system. The purpose of this paper
∗Academy of Mathematics and Systems Science, Chinese Academy of Sciences, CHINA (liuxin@lsec.cc.ac.cn). Research

supported in part by NSFC grant 11101409 and 10831006.
†Department of Mathematics and Institute of Natural Sciences, Shanghai Jiaotong University, CHINA (zw2109@sjtu.edu.cn).

Research supported in part by NSFC grant 11101274.
‡Department of Computational and Applied Mathematics, Rice University, UNITED STATES (yzhang@rice.edu). Research

supported in part by NSF Grant DMS-0811188, ONR Grant N00014-08-1-1101, and NSF Grant DMS-1115950.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
22 MAR 2012 2. REPORT TYPE

3. DATES COVERED
 00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
Limited Memory Block Krylov Subspace Optimization for Computing
Dominant Singular Value Decompositions

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Stanford University ,Department of Applied and Computational
Mathematics,Houston,TX,77005

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
In many data-intensive applications, the use of principal component analysis (PCA) and other related
techniques is ubiquitous for dimension reduction, data mining or other transformational purposes. Such
transformations often require efficiently, reliably and accurately computing dominant singular value
decompositions (SVDs) of large unstructured matrices. In this paper, we propose and study a subspace
optimization technique to significantly accelerate the classic simultaneous iteration method. We analyze the
convergence of the proposed algorithm, and numerically compare it with several state-of-the-art SVD
solvers under the MATLAB environment. Extensive computational results show that on a wide range of
large unstructured matrices, the proposed algorithm can often provide improved efficiency or robustness
over existing algorithms.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

31

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

LIMITED MEMORY BLOCK KRYLOV SUBSPACE OPTIMIZATION 2

is to present an algorithm for efficiently, reliably and accurately computing dominant SVDs of large and

unstructured matrices.

To fix notation, let us consider a real matrix A ∈ Rm×n (m ≤ n without loss of generality) and a given

positive integer k � min(m,n). The task is to find two orthogonal matrices Uk = [u1, . . . , uk] ∈ Rm×k

and Vk = [v1, . . . , vk] ∈ Rn×k, and a diagonal matrix Σk ∈ Rk×k whose diagonal entries are the k largest

singular values of A, say, σ1 ≥ · · · ≥ σk ≥ 0, such that

Ak ,
k∑
i=1

σiuiv
T
i = arg min

rank(W)≤k
‖A−W‖2F, (1)

where ‖ · ‖F denotes the Frobenius norm for matrices. For convenience, we will refer to such an approxima-

tion A ≈ Ak = UkΣkV
T
k as the k-th dominant (or truncated) singular value decomposition of A, or simply

the dominant SVD without explicitly mentioning the number k, which is typically much smaller than m.

During decades of research, numerous iterative algorithms have been developed for computing dominant

SVDs of A, mostly based on computing eigen-pairs (i.e., eigenvalues and eigenvectors) of the symmetric

matrix B = AAT (or ATA), or alternatively those of

B =

(
0 A

AT 0

)
,

with or without additional shifts. The classic simple subspace, or simultaneous, iteration method, extends

the idea of the power method which computes the largest eigenvalue and its eigenvector (see [16, 17, 24, 26]

for example), performing repeated matrix multiplication followed by orthogonalization. More elaborative

algorithms including Arnoldi methods [14, 13], Lanczos methods [21, 12], Jacobi-Davidson methods [23, 2],

to cite a few for each type, are specifically designed for large-scale but sparse matrices or other types of

structured matrices.

Traditionally, research on large-scale eigenvalue (or singular value) problems has primarily focused on

computing a subset of eigenvalues and eigenvectors (or singular values and vectors) of large sparse matrices.

Special algorithms for computing dominant SVDs of large unstructured, hence dense, matrices seem few

and far between. This state of affair is evident when examining survey articles and reference books on

eigenvalue and/or singular value computations (e.g., [19, 7, 25, 22, 10]). On the other hand, large-scale

but unstructured matrices do arise from applications, such as image processing and computational materials

science (e.g., [27, 20]), which involve large amounts of data even though their dimensions are relatively

small compared to those of large sparse matrices. This is especially true in recent years when the demand

for computing dominant SVDs of large unstructured matrices has become increasingly pervasive in data-

intensive applications. Clearly, for any large enough dense matrix A, the approach of computing the full

SVD ofA then truncating to the k-th dominant SVD is not a practical option when k is considerably smaller

than the sizes of A.

In some applications, it suffices to have rough approximations to data matrices using not-so-accurate

dominant SVDs. One approach for computing approximate SVDs is to use the Monto Carlo method [6]

LIMITED MEMORY BLOCK KRYLOV SUBSPACE OPTIMIZATION 3

which approximates the dominant singular values and corresponding singular vectors by extracting a subma-

trix from the target matrix. Recently, a randomized method for approximating dominant SVDs is analyzed

in [9] where one applies the simultaneous iteration once or a few times, starting from a randomly generated

initial guess. In these two works, theoretical results are developed to estimate approximation quality.

In the present paper, we aim to develop a general-purpose algorithm for computing dominant SVDs of

large unstructured matrices, to a high precision if so desired. Our approach is using a block Krylov subspace

optimization technique, to be explained below, to accelerate the basic simultaneous iteration method for

computing the k largest eigenvalues of AAT (or ATA) and their corresponding eigenvectors that we will

also refer to as the leading eigenvectors.

It is well known that the k leading eigenvectors of AAT maximize the following Rayleigh-Ritz function

under orthogonality constraint:

max
X∈Rm×k

‖ATX‖2F, s.t. XTX = I. (2)

In our proposed approach, we utilize (2) and a subspace optimization technique to accelerate the classic

simple subspace iterations. Specifically, in addition to the usual subspace iteration in which the current

iterate of X is multiplied by AAT, we also solve a restricted version of (2) in a subspace spanned by a few

previous iterates of X . For example, at iteration i, we may add an extra subspace constraint to (2) so that

X ∈ span
{
X(i−1), AATX(i−1)

}
where the above inclusion means that all the k columns of X are linear combinations of the 2k columns

on the right-hand side. In our approach, the number of previous iterates, or the length of the memory, can

be adjusted from iteration to iteration. Recall that a Krylov subspace generated by a matrix B and a vector

x is defined as the span of {x,Bx,B2x, · · · , Bd−1x} for some positive integer d. Therefore, we will call

our approach a limited memory block Krylov subspace optimization technique. A key observation is that,

like the classic simple subspace iteration method, the proposed algorithm only requires one matrix-block

multiplication of the form AATX per iteration; that is, the subspace optimization step requires no extra

matrix-block multiplication of this kind.

1.1 Contributions

The classic simple subspace (or simultaneous) iteration (SSI) method has two main advantages: (i) the use

of simultaneous matrix-block multiplications instead of individual matrix-vector multiplications enables

fast memory access and parallelizable computation on modern computer architectures, (ii) when comput-

ing a sequence of closely related eigen-pairs, starting from a block matrix facilitates the reuse of available

eigenspace information in the form of warm-start strategies. However, a severe shortcoming of the SSI

method is that its convergence speed depends greatly on eigenvalue distributions that becomes intolerably

slow with unfavorable eigenvalue distributions. This shortcoming basically prevents the SSI method from

being used as a general-purpose solver. A few SSI acceleration techniques exist, such as the Chebyshev ac-

celeration (e.g., [18, 25]), but their effectiveness and applicability remain limited. Presently, general-purpose

LIMITED MEMORY BLOCK KRYLOV SUBSPACE OPTIMIZATION 4

solvers for large-scale eigenvalue/singular value problems are largely designed for sparse or otherwise struc-

tured matrices.

In this work, we propose and study an SSI-based but much accelerated algorithm for computing dom-

inant SVDs of large unstructured matrices. At each iteration, the algorithm maximizes the Rayleigh-Ritz

function in a subspace spanned by a few previous iterate blocks with an adjustable dimension. In doing so, it

does not require any additional matrix-block multiplication. The algorithm is of a general-purpose type ca-

pable of obtaining highly accurate solutions, as opposed to only rough approximations. Extensive numerical

experiments have been conducted to verify the effectiveness of the algorithm with different singular value

distributions. Computational evidence shows that, under the Matlab environment, a simple implementation

of the proposed algorithm, called LMSVD, already outperforms some state-of-the-art SVD solvers on a

wide range of test matrices within the target class.

The idea of subspace optimization has often been employed in optimization such as in nonlinear pro-

gramming (see, for example, [8, 4, 30]). A more closely related work is “Locally Optimal Block Pre-

conditioned Conjugate Gradient Method” (LOBPCG) proposed by Knyazev [11] for solving generalized

eigenvalue problems. The subspace in each iteration of LOBPCG consists of the current iterate X(i), the

previous iterate X(i−1) and a residual vectors (possibly preconditioned). Our choice of subspace is more

general and its dimension is adjustable. Moreover, the subproblems we choose to solve are small eigenvalue

problems, while LOBPCG solves small generalized eigenvalue subproblems. Since both approaches use

subspace optimization, in this paper, we will present numerical comparison results with LOBPCG. Another

work by Yang, Meza and Wang [28] applies a special-purpose, three-block subspace optimization technique

to a nonlinear eigenvalue problems in electronic structure computation. Computational results are reported

in both [11] and [28], but few theoretical results are given.

This paper also includes a convergence analysis for our proposed acceleration method for SSI. Due to

the introduction of intermediate variables and additional structural changes, the convergence analysis for

the original SSI method no longer applies to our approach. Using a different analysis, we are able to obtain

global convergence results under reasonable assumptions.

1.2 Organization

The rest of this paper is organized as follows. We describe the motivation of our approach, the algorithmic

framework and the detailed algorithm in section 2; our convergence analysis is presented in section 3;

and several implementation issues are discussed in section 4. Extensive numerical results are presented in

section 5 to evaluate the robustness and efficiency of the proposed algorithm. Finally, we conclude the paper

in section 6.

1.3 Notations

The trace of a matrix M ∈ Rn×n is denoted by trace(M), and the main diagonal of M is denoted by

diag(M). Given a symmetric matrix M ∈ Rn×n, Λ(M) is a diagonal matrix whose diagonal elements

are the eigenvalues M in descending order. Superscripts for matrices are iteration counters if they are in

LIMITED MEMORY BLOCK KRYLOV SUBSPACE OPTIMIZATION 5

parentheses; otherwise they are exponents. Further notations will be explained as they appear during the

progress of the paper.

2 Limited Memory Block Krylov Subspace Optimization

Let us reiterate that our goal is to compute the k-th dominant SVD of a matrix A ∈ Rm×n as is defined in

problem (1), and our method is based on accelerating the simple subspace (or simultaneous) iteration (SSI)

method via solving problem (2) in a chosen subspace at each iteration.

2.1 Motivation and Framework

Starting from an initial point X(0) ∈ Rm×k, SSI computes the next iterate X(i+1) by the formula

X(i+1) ∈ orth
(
AATX(i)

)
, (3)

where orth(M) denotes the set of orthonormal bases for the range space ofM . As such, the iterates of SSI,

with a possible exception for the initial guess, satisfy the orthogonality condition XTX = I . When k = 1,

the SSI method reduces to the well-known power method for computing the single largest eigenvalue and

its eigenvector. In the SSI method, the orthonormalization step is indispensable (for example, see [19] for

more details).

For an unstructured matrix A, the computational costs of the matrix-block multiplication (i.e., AATX)

and orthonormalization in (3) are O(nmk) and O(mk2), respectively. In most applications, the approxi-

mating rank k is far less than the dimension m. Hence, the matrix-block multiplications of the type AATX

constitute the dominate computational cost of SSI. Obviously, an acceleration will be achieved if one can

reduce the number of iterations without having to incur extra matrix-block multiplications or other signif-

icant overhead. To achieve the goal of reducing the number of iterations, we propose to modify the basic

SSI framework as follows. We replace the last iterate X(i) in the right-hand side of (3) by an “improved”

intermediate iterate X̂(i) so that

X(i+1) ∈ orth
(
AATX̂(i)

)
, (4)

where, for a chosen subspace S(i) with a block Krylov subspace structure,

X̂(i) := arg max
X∈Rm×k

‖ATX‖2F, s.t. XTX = I, X ∈ S(i). (5)

Again, X ∈ S(i) means all columns of X are from the subspace S(i). We will soon specify the definition

of S(i) and show that the cost of solving (5) can be kept relatively low when the dimension of the subspace

S(i) is relatively small.

We now give the framework of our proposed algorithm that will be called LMSVD-F for ease of refer-

ence. Further details about this framework will be specified in the next subsection.

LIMITED MEMORY BLOCK KRYLOV SUBSPACE OPTIMIZATION 6

Algorithm 1: Framework LMSVD-F

1 Input A and k, initialize X(0) ∈ Rm×k and set i = 0.
2 while “not converged” do
3 Specify the block Krylov subspace S(i);

/* Block Subspace Optimization */

4 Solve X̂(i) := arg max{‖ATX‖2F : XTX = I, X ∈ S(i)};
/* Simultaneous Iteration */

5 Compute X(i+1) ∈ orth(AATX̂(i));
6 Increment i and continue.

2.2 Algorithm Details

We now describe the selection of the subspace S(i) which is constructed from a limited memory of the last

a few iterates. Its choice is of course not unique. We first consider the subspace spanned by the current i-th

iterate and the previous p iterates; i.e.,

S(i) := span
{
X(i), X(i−1), ..., X(i−p)

}
, (6)

where the memory length p ≥ 0 will be specified in Section 4.1.

We collect the current and the other p saved iterate blocks in (6) into a matrix

X = X(i)
p :=

[
X(i), X(i−1), ..., X(i−p)

]
∈ Rm×q (7)

where q = (p+ 1)k is the total number of columns in X
(i)
p . For notational simplicity, from here on we often

choose to drop the superscript and subscript from quantities like X
(i)
p whenever no confusion would arise.

Also note that the collection matrix X is boldfaced to make it distinct from its blocks. Similarly, we define

Y = Y(i)
p := ATX(i)

p :=
[
ATX(i), ATX(i−1), ..., ATX(i−p)

]
∈ Rm×q, (8)

which is also saved in memory. We emphasize that SSI already computes these blocks in Y and we only

need to save them once computed.

It is clearly that X ∈ S(i) if and only if X = XV for some V ∈ Rq×k, and the subspace optimization

problem (5) is equivalent to a generalized eigenvalue decomposition problem:

max
V ∈Rq×k

‖(ATX)V ‖2F, s.t. V T (XTX
)
V = I. (9)

However, numerical difficulty may arise in solving (9) as the matrix XTX can become numerically rank

deficient. A more stable approach, which we will implement, is to find an orthonormal basis for S(i), say,

Q = Q(i)
p ∈ orth

(
X(i)
p

)
,

LIMITED MEMORY BLOCK KRYLOV SUBSPACE OPTIMIZATION 7

and to express a matrix X ∈ S(i) as X = QV for some V ∈ Rq×k. Here we assume that X has a full

rank and will later relax this assumption. We now convert the generalized eigenvalue problem (9) into an

equivalent eigenvalue problem

max
V ∈Rq×k

‖RV ‖2F, s.t. V TV = I, (10)

where

R = R(i)
p := ATQ(i)

p . (11)

Next we describe how to calculate the matrix product R in (11) from historical information without any

additional computation involving the matrix A. Since Q ∈ orth(X) and we assume that X has a full rank,

there exists a nonsingular matrix C ∈ Rq×q such that X = QC. Hence, Q = XC−1, and R in (11) can be

computed as

R = ATQ = (ATX)C−1 = YC−1, (12)

where Y = ATX is accessible from our limited memory. Once R is available, we can solve (10) by

computing the k leading eigenvectors of the q × q matrix RTR. Let a solution to (10) be V̂ . The matrix

product in Line 5 of the framework LMSVD-F can then be assembled as

AATX̂(i) = ARV̂ = AYC−1V̂ . (13)

The remaining issue is how to efficiently and stably compute Q and R even when the matrix X is numeri-

cally rank deficient. We use the following procedure in our implementation.

Noting that each block in X is individually orthonormal, we choose to keep the latest block X(i) intact,

and project the rest of the blocks onto the null space of (X(i))T, obtaining

PX = P
(i)
X :=

(
I −X(i)(X(i))T

) [
X(i−1) · · · X(i−p)

]
. (14)

Next we perform an orthonormalization of PX via the eigenvalue decomposition of its Gram matrix

PT
XPX = UXΛXU

T
X , (15)

where UX is orthogonal and ΛX is diagonal. It can be easily verified that the matrix

Q = Q(i)
p :=

[
X(i), PXUXΛ

− 1
2

X

]
∈ orth

(
X(i)
p

)
, (16)

provided that ΛX is invertible. The above procedure can be stabilized by monitoring the numerical rank of

PX , or specifically the eigenvalues on the diagonal of the matrix ΛX in (15). We choose to implement the

following two-step stabilization scheme:

Step 1 Delete the columns of PX whose Euclidean norms are below a threshold ε1 > 0.

Step 2 Delete the eigenvalues in ΛX , and corresponding columns in UX , that are less than ε2 > 0.

LIMITED MEMORY BLOCK KRYLOV SUBSPACE OPTIMIZATION 8

With a slight abuse of notation, we will continue to use PX , UX and ΛX to denote their stabilized versions,

respectively, after possible deletions. Therefore, a stable construction of Q is still given by formula (16).

After this stable orthonormalization, the corresponding R matrix can be generated as

R = R(i)
p :=

[
Y (i), PY UXΛ

− 1
2

X

]
, (17)

where before the stabilization procedure we had

PY = P
(i)
Y :=

[
Y (i−1) · · · Y (i−p)

]
− Y (i)(X(i))T

[
X(i−1) · · · X(i−p)

]
, (18)

but some of the columns of PY may have been deleted corresponding to those deleted columns of PX

during the stabilization steps. After the removal of numerical rank deficiency, the R matrix in (17) is well

defined as is the Q matrix in (16).

In summary, the algorithm performs eigenvalue decompositions on two small symmetric positive definite

matrices: PT
XPX in (15) and RTR in (10). The sizes of the two matrices are pk and (p+ 1)k, respectively,

and frequently smaller due to deletions. Our computational experience indicates that in general p should be

set to 2 or 3, or at most 4 but not greater. Consequently, when k is sufficiently smaller than m, it holds that

(p + 1)k � m ≤ n. In such a case, any adequate eigenvalue solvers for dense matrices can be utilized

to solve the two small eigenvalue problems without significantly affecting the overall performance of our

algorithm.

2.3 LMSVD Algorithm Statement

Based on the description above, we state our full Algorithm with the exception about our strategy for select-

ing the memory length (or block size) p that is to be specified later. For ease of reference, the algorithm will

be referred to as LMSVD.

Algorithm 2: Limited Memory Subspace Optimization for SVD (LMSVD)

1 Input A and k. Initialize X ≡ X(0) ∈ Rm×k, Y ≡ Y (0) = ATX(0), and p = i = 0;
2 while “not converged” do

/* Block Subspace Optimization */
3 Compute PX by (14) and perform stabilization Step 1;
4 Compute PY by (18) with the same column deletions as for PX ;
5 Compute the eigenvalue decomposition of PT

XPX in (15);
6 Perform stabilization Step 2 to possibly shrink ΣX and UX ;
7 Compute R by (17) and eigenvalue decomposition of RTR;
8 Let V̂ solve (10), consisting of the k leading eigenvectors of RTR;
9 Compute X̂(i) = QV̂ and Ŷ (i) = RV̂ (which equals ATX̂(i));

/* Simultaneous Iteration */

10 Compute X(i+1) ∈ orth(AŶ (i)) and Y (i+1) = ATX(i+1);
11 Increment i, update p, X and Y, and continue.

LIMITED MEMORY BLOCK KRYLOV SUBSPACE OPTIMIZATION 9

In Line 10, the orthonormalization is done by QR factorization in our implementation. It is worth noting

that the solution X̂(i) to problem (10) has orthonormal columns.

It is also reasonable to use the intermediate iterates X̂(j), j = i − 1, · · · , i − p, to construct a limited

memory block Krylov subspace

Ŝ(i) := span
{
X(i), X̂(i−1), ..., X̂(i−p)

}
, (19)

to be used in place of S(i) in the LMSVD framework. In our experiments, this alternative subspace con-

struction works equally well, very often slightly better. Hence, we choose to use the above subspace Ŝ(i) as

the default construction in our LMSVD implementation.

2.4 Complexity per Iteration

On unstructured matrices, the per-iteration operation count of the classic SSI method is O(nmk) for the

matrix-block multiplications, and O(mk2) for the orthonormalization (say, by QR factorization). On the

other hand, the additional cost per-iteration of LMSVD is chieflyO(mk2(1+p)2) for finding an orthonormal

basis for the subspace S(i), and O(k3(1 + p)3) for solving the two small eigenvalue problems. Comparing

the total additional cost of LMSVD to the total cost of SSI, i.e.,

O
(
(m+ k + kp)k2(1 + p)2

)
vs O (mk(n+ k)) ,

we can see that when p � k � m ≤ n, the above reduces to O(k(1 + p)2) vs O(n + k). In this case,

the former is clearly dominated by the latter, and a considerable acceleration to the SSI method becomes

achievable if our subspace optimization strategy can significantly reduce the number of iterations required.

The argument above, however, hinges on the fact that the matrices under consideration are unstructured

and dense. For highly structured matrices such as sparse matrices, the cost of matrix-vector multiplications

involving A may become much lower than O(nm). In this case, it is likely that the overhead introduced by

our subspace optimization becomes too high to offer any benefits.

3 Convergence Analysis

In this section, we study convergence properties of the proposed algorithm LMSVD. In the first subsection,

we describe the first-order necessary optimality conditions of (2) and restate the existing convergence results

for SSI. Then we give a convergence result for a class of SSI-based algorithms, including both SSI and

LMSVD. The convergence is generally to a critical point of (2); but under mild assumptions, it also implies

convergence to the global optimal solution of (2).

3.1 Preliminaries

For notational simplicity, let

B = AAT,

LIMITED MEMORY BLOCK KRYLOV SUBSPACE OPTIMIZATION 10

and λ1 ≥ ... ≥ λm ≥ 0 be the eigenvalues of B. Since the matrix XTX is symmetric, the Lagrangian

multiplier Λ corresponding toXTX = I is a symmetric matrix as well. The Lagrangian function of problem

(2) is

`(X,Λ) =
1

2

(
trace(XTBX)− trace(Λ(XTX − I))

)
.

Due the orthogonality constraint XTX = I , the linear independence constraint qualification always holds

true for (2). Therefore, the first-order necessary conditions for optimality of (2) are that

∂X`(X,Λ) = BX −XΛ = 0 and XTX = I. (20)

Multiplying both sides of the first equation in (20) by XT and using XTX = I , we obtain the expression

Λ = XTBX. (21)

Combining (20) and (21), plus the orthogonality constraint, we can write the first-order necessary optimality

conditions of (2) into

(I −XXT)BX = 0 and XTX = I. (22)

It is clear that (i) if X is a critical point, so is XQ for any orthogonal matrix Q; and (ii) the columns of any

critical point X span a nontrivial invariant subspace of B (but need not to be eigenvectors of B).

To facilitate further discussions, we denote the distance between a matrix X ∈ Rm×k and a set L ⊂
{X | X ∈ Rm×k} as dist(X,L), i.e.,

dist(X,L) := min
Y ∈L
‖X − Y ‖F. (23)

We use L∗ and Lc to denote, respectively, the sets of optimal solutions and critical points of (2); that is,

L∗ := {X ∈ Rm×k | X is an optimal solution of (2)}, (24)

Lc := {X ∈ Rm×k | X satisfies the conditions (22)}. (25)

3.2 Convergence of SSI

Let v1, v2, ..., vm be the unit eigenvectors of B associated with λ1 ≥ ... ≥ λm ≥ 0, respectively, and

in particular Vk := [v1, v2, ..., vk] ∈ Rm×k consisting of the k leading eigenvectors. We first state two

standard assumptions for SSI.

Assumption 3.1. (a) The initial iterate X(0) satisfies the condition that V T
k X

(0) is nonsingular. (b) There

is a gap between the k-th and the (k + 1)-th eigenvalues of B, namely, λk > λk+1 ≥ 0.

SSI has the following well-known convergence property.

LIMITED MEMORY BLOCK KRYLOV SUBSPACE OPTIMIZATION 11

Proposition 3.1. Let {X(i)} be generated by SSI. Under Assumption 3.1, the distance between i-th iterate

X(i) and the optimal solution set L∗ of (2) converges to zero, i.e.,

lim
i→+∞

dist(X(i),L∗) = 0,

Moreover, an upper bound for the asymptotic convergence rate is given by

lim
i→+∞

dist(X(i+1),L∗)
dist(X(i),L∗)

≤ λk+1

λk
< 1.

We should point out that convergence properties of SSI are normally stated in terms of Ritz-value and

Ritz-vector sequences (see [19] and [25], for example) that requires further calculations in addition to the

main SSI operations given in (4). However, the statement in Proposition 3.1, which better suits our purpose

in this paper, is by no mean weaker than other more “standard” forms of convergence results for SSI.

3.3 Convergence of an accelerated class

The introduction of intermediate iterates X̂(i) also introduces complications in the analysis of the acceler-

ated subspace iterations. Unable to directly extend the convergence proof of SSI to LMSVD, we take a

different approach and establish a more general result that requires no assumption whatsoever. Naturally,

the conclusion is not as strong as the existing SSI result in Proposition 3.1. The result is Theorem 3.1 and

is applicable to a whole class of SSI-based algorithms that we call the SSI+ class defined below, which

includes both SSI and LMSVD as special cases. Recall that Φ(X) = ‖ATX‖2F.

Algorithm 3: SSI+ Class

1 Input matrix A ∈ Rm×n (m ≤ n) and positive integer k ≤ m.
2 Initialize X(0) ∈ Rm×k so that (X̂(0))TX̂(0) = I and ATX(0) 6= 0.
3 for i = 0, 1, 2, · · · do
4 Find X̂(i) ∈ Rm×k such that (X̂(i))TX̂(i) = I and Φ(X̂(i)) ≥ Φ(X(i)).
5 Let X(i+1) ∈ orth(AATX̂(i)), and update k = rank(X(i+1)) if necessary.

Clearly, if we set X̂(i) = X(i) at every iteration, we recover SSI.

Theorem 3.1. Let the sequence {X̂(i)} be generated by a member of the SSI+ class. Then any cluster point

of the sequence is a critical point of (2) that spans a non-trivial invariant subspace of AAT; i.e.,

lim
i→+∞

dist(X(i),Lc) = 0,

We note that the sequence is bounded by construction, hence a cluster point exists. In the rest of this sub-

section, we will develop a proof for Theorem 3.1 based on two technical lemmas, which show monotonicity

of Φ(X) during iterations and establish a connection to the critical point condition (22).

LIMITED MEMORY BLOCK KRYLOV SUBSPACE OPTIMIZATION 12

Lemma 3.1. Let B ∈ Rm×m be symmetric positive semidefinite with rank r > 0. For any nonzero vector

x ∈ Rm, there holds

(xTB3x)(xTx)− (xTB2x)(xTBx) ≥ λr(B)
(
(xTB2x)(xTx)− (xTBx)2

)
, (26)

where λr(B) > 0 is the smallest positive eigenvalue of B. Moreover, whenever xTx = 1 and Bx 6= 0,

inequality (26) implies

xTB3x

xTB2x
≥ xTBx+

λr(B)

‖B‖22

(
xTB2x− (xTBx)2

)
. (27)

Proof. Without loss of generality, we assume that B is diagonal; otherwise, it suffices to replace x by QTx

and B` by QTB`Q for ` = 1, 2, 3, where the columns of Q consist of the unit eigenvectors of B. We now

prove (26) for a diagonal matrix B. By expanding the terms in the left-hand side of (26), we obtain

(xTB3x)(xTx)− (xTB2x)(xTBx)

=
m∑
i=1

B3
iix

2
i

m∑
j=1

x2j −
m∑
i=1

B2
iix

2
i

m∑
j=1

Bjjx
2
j

=
∑

1≤i,j≤m
x2ix

2
j (B

3
ii −B2

iiBjj)

=
∑

1≤i<j≤m
x2ix

2
j (B

3
ii −B2

iiBjj) +
∑

1≤j<i≤m
x2ix

2
j (B

3
ii −B2

iiBjj)

=
∑

1≤i<j≤m
x2ix

2
j (B

3
ii +B3

jj −B2
iiBjj −BiiB2

jj)

=
∑

1≤i<j≤m
x2ix

2
j (Bii +Bjj)(Bii −Bjj)2.

In the above derivation, we should note the changes in the range of summation.

Similarly, the second term in the right-hand side of (26) can be expanded into

(xTB2x)(xTx)− (xTBx)2 =
∑

1≤i<j≤m
x2ix

2
j (Bii −Bjj)2.

If Bii +Bjj = 0, then Bii −Bjj = 0 due to the nonnegativity of diag(B); Otherwise,

Bii +Bjj ≥ max(Bii, Bjj) ≥ λr(B).

Combining all above together, we deduce that

(xTB3x)(xTx)− (xTB2x)(xTBx) ≥ λr(B)
∑

1≤i<j≤m
x2ix

2
j (Bii −Bjj)2

which proves (26). Finally, when xTx = 1 and Bx 6= 0, we divide the left-hand side of (26) by xTB2x and

LIMITED MEMORY BLOCK KRYLOV SUBSPACE OPTIMIZATION 13

the right-hand side by ‖B‖22 ≥ xTB2x, leading to (27).

Lemma 3.2. Let B ∈ Rm×m be symmetric positive semidefinite with rank r > 0, and let X ∈ Rm×k satisfy

XTX = I and 0 < ` = rank(BX) ≤ min(r, k). Then, for any Y ∈ orth(BX) there holds that

trace(Y TBY)− trace(XTBX) ≥ λr(B)

‖B‖22

∥∥(I −XXT)BX
∥∥2

F . (28)

Proof. We first note that for any given Y1, Y2 ∈ orth(BX) there exists an orthogonal matrix U ∈ R`×`

so that Y1 = Y2U , implying trace(Y T
1 BY1) = trace(Y T

2 BY2). Hence, it suffices to prove (28) for a

particular Y ∈ orth(BX).

Let BX = UDV T be the economy-form singular value decomposition of BX; namely, U ∈ Rm×`

and V ∈ Rk×` have orthonormal columns and D ∈ R`×` is diagonal and positive definite. We select

Y = U ∈ orth(BX), or equivalently,

Y = BXVD−1 = BZD−1

where Z = XV satisfies ZTZ = I . It is easy to see that

trace(Y TBY) = trace((BZD−1)TB(BZD−1)) = trace(D−1ZTB3ZD−1). (29)

Hence, for i = 1, 2, ..., `,
(Y TBY)ii = zT

i B
3zi/D

2
ii,

1 = (Y TY)ii = zT
i B

2zi/D
2
ii,

(30)

where zi is the i-th column of Z. It follows from (30) that

trace(Y TBY) =
∑̀
i=1

zT
i B

3zi
zT
i B

2zi
, (31)

In view of (31) and (27), we deduce

trace(Y TBY) ≥
∑̀
i=1

(
zT
i Bzi +

λr(B)

‖B‖22

(
zT
i B

2zi − (zT
i Bzi)

2
))

= trace(ZTBZ) +
λr(B)

‖B‖22

∑̀
i=1

(
‖Bzi‖22 − (zT

i Bzi)
2
)

≥ trace(ZTBZ) +
λr(B)

‖B‖22

(
‖BZ‖2F − ‖ZTBZ‖2F

)
.

Recall that Z = XV , BX = UDV T and V TV = I . We derive that

trace(ZTBZ) = trace(V T(V DUT)XV) = trace(V DUTX) = trace(XTBX).

LIMITED MEMORY BLOCK KRYLOV SUBSPACE OPTIMIZATION 14

Similarly, we can prove that ‖BZ‖2F = ‖BX‖2F and ‖ZTBZ‖2F = ‖XTBX‖2F. Therefore,

trace(Y TBY) ≥ trace(ZTBZ) +
λr(B)

‖B‖22

(
‖BZ‖2F − ‖ZTBZ‖2F

)
= trace(XTBX) +

λr(B)

‖B‖22

(
‖BX‖2F − ‖XTBX‖2F

)
= trace(XTBX) +

λr(B)

‖B‖22

∥∥BX −X(XTBX)
∥∥2

F

= trace(XTBX) +
λr(B)

‖B‖22

∥∥(I −XXT)BX
∥∥2

F ,

which completes the proof.

Now we are ready to present a proof for Theorem 3.1.

Proof. By initialization, Φ(X(0)) = ‖ATX(0)‖2F > 0. Now we show that {Φ(X(i))} is nondecreasing,

implying that the sequence is bounded away from the zero matrix. After each iteration, the change in

Φ(X) = trace(XTAATX) is

Φ(X(i+1))− Φ(X(i)) ≥ Φ(X(i+1))− Φ(X̂(i)), (32)

since Φ(X̂(i)) ≥ Φ(X(i)) by construction. By Lemma 3.2, for B = AAT,

Φ(X(i+1))− Φ(X̂(i)) ≥ λr(B)

‖B‖22

∥∥∥(I − X̂(i)(X̂(i))T
)
BX̂(i)

∥∥∥2
F
, (33)

where λr(B) > 0 is the smallest positive eigenvalue of B. It follows from (32) and (33) that the sequence

{Φ(X(i))} is monotonically non-decreasing. It is clearly positive bounded above and convergent, hence by

virtue of (33) forcing

lim
i→+∞

∥∥∥(I − X̂(i)(X̂(i))T
)
BX̂(i)

∥∥∥2
F

= 0. (34)

Consequently, every limit point is a critical point satisfying (22). The conclusion of the theorem follows

readily by standard arguments.

3.4 Remarks on the convergence result

Theorem 3.1 is applicable to a broad class of SSI acceleration schemes. For example, any method producing

an approximate, feasible solution to the subspace optimization problem (5) is admissible as long as the

function Φ(X) value is not decrease. The theorem is established under the absolutely minimal assumption;

i.e., the iterations have a nontrivial start. Even in the case of SSI, the result is not implied by existing results

since a gap in singular values is not necessary.

As perhaps is expected, the conclusion of Theorem 3.1 is also weak in the sense of only guaranteeing

convergence to a critical point, but not to a global maximizer. However, in the context of solving (5),

LIMITED MEMORY BLOCK KRYLOV SUBSPACE OPTIMIZATION 15

guaranteed convergence to a critical point is not as weak as it could be for a more general non-concave

maximization problem since (5) does not have any local non-global maximizer, as has been long known

(and can be shown easily from second-order optimality conditions). As such, it seems highly unlikely

for a subspace maximization scheme like LMSVD to be attracted to any saddle point. Indeed, we will later

present numerical evidence to demonstrate that LMSVD almost always converges to optima even it is started

extremely close to a non-optimal saddle point. In our extensive numerical experiments, LMSVD behaves as

robustly as SSI, if not more so, in terms of converging to a global maximizer.

Finally, we mention that if we add the assumption that the sequence {V T
k X

(i)}, i.e., coefficient matrices

associated with the dominant eigenvector of AAT, remains uniformly nonsingular, then under Assump-

tion 3.1 we could derive convergence results for LMSVD similar to those in Proposition 3.1 for SSI.

4 Practical Issues

Recall that the subspace S(i) is constructed from the current iterate and p previous ones. In this section, we

describe a strategy for selecting the memory length p from iteration to iteration. We also discuss the choice

for the number of guard vectors that are commonly used in eigenvalue solvers, and specify the stopping rule

used in LMSVD.

4.1 Memory Length

The memory length p, used for constructing the subspace S(i) in (6), is a crucial parameter to the perfor-

mance of our algorithm. The simplest way is to assign a constant integer value pmax to p at every iteration

once the iteration counter i reaches pmax; that is, at iteration i,

p = min(i, pmax). (35)

In general a larger pmax leads to a smaller number of iterations, but increasing pmax also increases the

computational costs per iteration. Our computational experiments indicate that usually a good balance is

attained for pmax ∈ {2, 3, 4}.
We have also found that an adaptive strategy on selecting p is useful to improving the performance of

LMSVD. As the iterate sequence converges, the neighboring iterates tend to become more and more linearly

dependent. Therefore, once judged appropriate it is beneficial to shrink the memory by deleting a block from

the memory, reducing the size of later subspace optimization problems. Specifically, after pmax iterations,

we activate the following adaptive memory size strategy:

p =

⌈
Nc(R)

k

⌉
− 1, (36)

where dte is the smallest integer greater than or equal to t, and Nc(R) is the number of columns in R (see

Line 7 of Algorithm LMSVD) which can be smaller than (p+ 1)k due to possible deletions done in the two

stabilization steps. Combining (35) and (36), we reach our formula for selecting the memory length p at the

LIMITED MEMORY BLOCK KRYLOV SUBSPACE OPTIMIZATION 16

i-th iteration:

p = min

{
i,

⌈
Nc(R)

k

⌉
− 1, pmax

}
(37)

which is nonnegative. Generally, p initially increases to reach pmax, then becomes non-increasing with a

probability to decrease to a smaller value, even possibly to zero. Of course, when the memory length p

becomes zero, our method reduces to the classic SSI.

4.2 Guard Vectors

It is well-known that when the SSI method is applied to a symmetric positive semidefinite matrixB ∈ Rm×m

with m × k block iterates, the convergence to the eigenspace of the first r ≤ k leading eigenvectors has an

asymptotic rate

λk+1/λr ≤ λk+1/λk

where λj , j = 1, 2, · · · ,m, are the eigenvalues of B in a descending order. If we really only need to

compute the first r < k leading eigen-pairs, the additional k − r vectors are called “guard vectors” and

play the role of accelerating convergence. In general, the more guard vectors are used, the less iterations are

needed for convergence, but at a higher cost per iteration on memory and computing time. Our algorithm,

built on the basis of the SSI framework, also benefits from the use of guard vectors.

Now assume that the r-th dominant SVD of A ∈ Rm×n (m ≤ n) is to be computed. We implement the

following standard choice for k > r:

k = min{2r, r + 10,m}. (38)

4.3 Stopping Rule

It is most natural to monitor convergence by observing the magnitude of the residual matrix

Res := (I −XXT)AATX = AY −XY TY (39)

where Y = ATX which is computed at each iteration, preferably in a relative sense; but it requires some

additional matrix multiplications. To reduce unnecessary overheads, in LMSVD we use a two-level strategy

with a pair of stopping criteria: a “low-cost” one and a “high-cost” one. We examine the low-cost criterion

at each iteration, and activate the high-cost one only when the low-cost one is satisfied.

The low-cost criterion is based on examining the r leading Ritz values of AAT in the subspace S(i)

that are available after the subspace optimization problem (10) is solved at each iteration. Specifically, the

criterion is, for some tolerance ε` > 0,∥∥∥Λ(i)
r −Λ(i−1)

r

∥∥∥
F
< ε`

∥∥∥Λ(i)
r

∥∥∥
F

(40)

where Λ
(i)
r consists of the r leading eigenvalues of (R

(i)
p)TR

(i)
p with R

(i)
p given by (17). This criterion not

LIMITED MEMORY BLOCK KRYLOV SUBSPACE OPTIMIZATION 17

only can be observed at almost no additional cost, but also is a reasonably accurate indicator of convergence.

Once the current iteration satisfies the low-cost criterion (40), we start to check the residual in (39) in

a relative sense. To avoid extra computation, we evaluate the residual at the intermediate variable X̂(i−1).

Specifically, the high-cost criterion is, for some tolerance εh > 0,∥∥∥Res(i−1)ej

∥∥∥
2
< εh λ

(i)
max, j = 1, ..., r, (41)

where λ(i)max is the largest eigenvalue of (R
(i)
p)TR

(i)
p , ej is the j-th column of the identity matrix, and

Res(i−1) = AŶ (i−1) − X̂(i−1)(Ŷ (i−1))TŶ (i−1). (42)

We note that only the first r columns of Res(i−1) need to be evaluated, and the SSI method already does the

calculation of AŶ = AATX̂ .

To relate the tolerance ε` for the low-cost criterion to εh, we choose the formula ε` =
√
εhε after

some numerical experiments, where ε is the machine epsilon (in double precision, ε = 2.2204 × 10−16).

Empirically, this proves to be a well balanced choice for efficiency and reliability in our two-level strategy.

The number of iterations in which the high-cost criterion is checked, on the average, is about 10% of the

total number of iterations. We note that the tolerance for the high-cost criterion, εh, becomes the only free

parameter in our stopping rule. For simplicity, in the sequel we will just refer to it as ε, which will be varied

in some numerical experiments.

5 Numerical Experiments

In this section, we demonstrate the effectiveness of the LMSVD, as a general solver for computing dominant

SVDs of unstructured matrices, by numerical experiments on a wide variety of randomly generated matrices

as well as a few examples from applications. Our code is implemented in MATLAB. All the experiments

were preformed on a HP laptop with Intelr dual core i5-460M CPU at 2.53GHz (×2) and 8GB of memory

running Ubuntu 10.10 and MATLAB 2010b.

We uses r to denote the targeted number of dominant singular values and vectors. Considering the guard

vector discussed in section 4.2, a k-dominant SVD problem is actually solved, in which k is determined by

(38) where the default value of the parameter ξ = 10. The default tolerance value is ε = 10−8 in the

stopping criterion (41). The limited memory subspace defined in (19) is always used, unless specified

otherwise. The maximal blocks of previous iterates in limited memory subspaces is set to pmax = 3 in (37).

In addition, based on some empirical experiments, we set the tolerance values, ε1 and ε2, used in our two-

step stabilization scheme (see the discussion after (15)) as follows: ε1 = 5 × 10−8 and ε2 = min(εh,
√
ε),

where εh is the tolerance in (41) and ε is the machine precision (in double precision, ε = 2.2204× 10−16).

LIMITED MEMORY BLOCK KRYLOV SUBSPACE OPTIMIZATION 18

5.1 Random problem generation

In this section, unless otherwise specified, our random matrix A ∈ Rm×n, assuming m ≤ n without loss of

generality, is constructed by one of the two models below that we call Model 1 (left) and Model 2 (right):

A := UDV T or A := DR. (43)

In Model 1, the matrices U ∈ Rm×m and V ∈ Rn×m are first generated with i.i.d. standard Gaussian

entries and then orthogonalized using (economy-size) QR decompositions, while D ∈ Rm×m is a nonneg-

ative diagonal matrix. This construction builds the singular value decomposition of A, but the involved

orthogonalization can become costly as matrix sizes increase. In Model 2, D ∈ Rm×m is still diagonal, and

R ∈ Rn×m is a random matrix whose entries are i.i.d. standard Gaussian. Clearly, the construction cost of

Model 2 is much lower.

In both models, the diagonal entries of D are

Dii := max{β1−i, ε2}, ∀i = 1, 2, ...,m, (44)

where ε is the tolerance used in the stopping criterion (41). The parameter β ≥ 1 determines the decay rate

of singular values, precisely in Model 1 and approximately in Model 2. Generally speaking, the closer β

is to 1, the smaller decay there is in singular values of a generated matrix, and the more difficult the test

instance becomes.

5.2 Sensitivity with respect to different parameters

In this subsection, we justify via numerical evidence the default choices we made in the LMSVD implemen-

tation; i.e., the choice of a subspace construction between (6) and (19), the choice of the number of guard

vectors, and the choice of pmax – the maximum memory length. For this purpose, we perform three sets

of tests using six randomly generated matrices, all from Model 1 where the decay parameter for singular

values was set to β = 1.01. The sizes of the test matrices, (m,n), and the number of computed dominant

singular values, r, are set to be (m,n) = (2000, 4000) with r = 40, 80, 120, and (m,n) = (4000, 4000)

with r = 80, 120, 160, totaling 6 different test scenarios.

We first compare the performance of LMSVD using subspaces in (6) and (19) that we call subspaces 1

and 2, respectively, for convenience. The comparison is based on three quantities: the CPU time in seconds,

the relative error between the computed and the exact r dominant singular values, say Σ and Σ∗ respectively,

||Σ∗ − Σ||/||Σ∗||, and the total number of matrix-vector multiplications. The results in terms of the above

three metrics are depicted in plots (a)-(c) of Figure 1, respectively. From these plots, we can see that

LMSVD using subspace 1 defined in (19) required fewer number of matrix-vector multiplications than that

using subspace 2 defined in(6), and achieved a similar solution quality within a similar amount of CPU time.

Hence, we choose to use (19) in all subsequent experiments.

Our next test is to study the behavior of LMSVD with respect to the number of guard vectors. Specifi-

cally, we run LMSVD with ξ in (38) going over the set {0, 5, 10, 20, 40, r}. The corresponding performance

LIMITED MEMORY BLOCK KRYLOV SUBSPACE OPTIMIZATION 19

Figure 1: Performance of LMSVD using two different subspaces

1 2 3 4 5 6
1

2

3

4

5

6

7

8

test scenario

C
P

U
 t

im
e

subspace 1

subspace 2 (default)

(a) CPU time

1 2 3 4 5 6
10

−15

10
−14

10
−13

test scenario

R
e

la
tiv

e
 E

rr
o

r

subspace 1

subspace 2 (default)

(b) Relative error

1 2 3 4 5 6
1000

1200

1400

1600

1800

2000

2200

2400

test scenario

N
u

m
b

e
r

o
f

m
a

tr
ix

−
ve

ct
o

r
m

u
lti

p
lic

a
tio

n
s

subspace 1

subspace 2 (default)

(c) Matrix-vector multiplications

of LMSVD is illustrated in the plots (a)-(c) of Figure 2. From these results, it appears that ξ = 10 is a well

balanced choice, and is set as subsequently the default value.

Figure 2: Performance of LMSVD with respect to the number of guard vectors.

1 2 3 4 5 6
1

2

3

4

5

6

7

8

9

10

11

test scenario

C
P

U
 t

im
e

ξ = 0

ξ = 5

ξ = 10 (default)

ξ = 20

ξ = 40

ξ = r

(a) CPU time

1 2 3 4 5 6
10

−15

10
−14

10
−13

10
−12

test scenario

R
e

la
tiv

e
 E

rr
o

r

ξ = 0

ξ = 5

ξ = 10 (default)

ξ = 20

ξ = 40

ξ = r

(b) Relative error

1 2 3 4 5 6
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

test scenario

N
u

m
b

e
r

o
f

m
a

tr
ix

−
ve

ct
o

r
m

u
lti

p
lic

a
tio

n
s

ξ = 0

ξ = 5

ξ = 10 (default)

ξ = 20

ξ = 40

ξ = r

(c) Matrix-vector multiplications

We now consider the choice of pmax, which determines the longest memory (i.e., number of previous

iterates) used in LMSVD. We test 6 different values: pmax = 0 to 5. Note that pmax = 0 gives the classic

SSI method. The performance of LMSVD on this test is presented in plots (a)-(c) of Figure 3, from which

we can see a significant performance gap between pmax = 0 and pmax > 0. A slight overall improvement is

still detectable as pmax increases from 1 to 3. Afterward, the benefit of increasing pmax seems to diminish

as the cost of subproblem solving outpaces the saving from a reduced iteration number. Consequently, we

choose to use pmax = 3 as the default value in our tests (although we notice that when the ratio k/r is close

to one, a slightly bigger pmax may yield better performance).

It is well known that besides the global maximum and minimum, all other critical points of (2) are saddle

points. We present numerical evidence to show that it is highly unlikely for the algorithm to be attracted

to a saddle point even under extreme conditions. In this set of experiments, the sizes of the test matrices

are (m,n, r) = (2000, 4000, 40). The initial guess X(0) is generated near a saddle point XS of (2) whose

LIMITED MEMORY BLOCK KRYLOV SUBSPACE OPTIMIZATION 20

Figure 3: Performance of LMSVD with respect to pmax.

1 2 3 4 5 6
10

0

10
1

10
2

test scenario

C
P

U
 t

im
e

Pmax = 0 (SSI)

Pmax = 1

Pmax = 2

Pmax = 3 (default)

Pmax = 4

Pmax = 5

(a) CPU time

1 2 3 4 5 6
10

−15

10
−14

10
−13

10
−12

test scenario

R
e

la
tiv

e
 E

rr
o

r

Pmax = 0 (SSI)

Pmax = 1

Pmax = 2

Pmax = 3 (default)

Pmax = 4

Pmax = 5

(b) Relative error

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

test scenario

N
u

m
b

e
r

o
f

m
a

tr
ix

−
ve

ct
o

r
m

u
lti

p
lic

a
tio

n
s

Pmax = 0 (SSI)

Pmax = 1

Pmax = 2

Pmax = 3 (default)

Pmax = 4

Pmax = 5

(c) Matrix-vector multiplications

columns are singular vectors randomly selected from the matrix U in (43). Specifically,

X(0) = XS + θ randn(m, k)

where θ > 0 controls the distance between X(0) and XS , and randn(m, k) is the Maltab command for

generating random Gaussian matrices of size m by k. Under the default setting, we compare the behavior

of LMSVD with that of the SSI method (i.e., LMSVD with pmax = 0). A summary of numerical results is

given in Table 5.2.

We observe that when there is a notable decay in singular values, both algorithms could move away from

a saddle point and eventually converge, even in the extreme case ofX(0) = XS (presumably due to rounding

errors). It becomes more difficult to escape from a saddle point when there is little decay in singular values.

This should be expected since in this case the objective value at a saddle point can be extremely close to that

at the maximum. It is interesting to note that whenever LMSVD failed to escape, so did the SSI method.

Empirically, LMSVD appears to have a similar convergence behavior as SSI, if not a better one. We note

that SSI has been proven in theory to possess a guaranteed convergence to the global maximum.

5.3 Performance comparison on random matrices

We now compare the performance of LMSVD with several state-of-the-art SVD solvers including the

Matlab built-in function EIGS which interfaces with the Fortran package ARPACK [14], a Matlab ver-

sion of LOBPCG [11] 1 and a Matlab version of the solver LANSVD in the package PROPACK [12] 2. In

addition, we also compare with SSI without acceleration (i.e., pmax = 0 in LMSVD) and with Chebyshev

acceleration, called SSI+C, which is SSI augmented by extra steps introduced in section 1 of chapter 6 in

[25]. Instead of the dedicated Matlab built-in interface SVDS for singular value decomposition, we choose

to directly use the function EIGS since our numerical experiments indicate that the performance of the for-

mer is often significantly inferior to that of the latter in many instances. We also mention that the Matlab

version of LANSVD performs re-orthogonalization calculations by calling a Fortran subroutine via Matlab’s
1Downloadable from http://www.mathworks.com/matlabcentral/fileexchange/48.
2Downloadable from http://soi.stanford.edu/˜rmunk/PROPACK.

LIMITED MEMORY BLOCK KRYLOV SUBSPACE OPTIMIZATION 21

Table 1: An illustration of global convergence to the solution set

Test Settings LMSVD SSI

β θ #iter. error #iter. error

1.1 1.e-08 3 5.3548e-15 6 8.8056e-15
1.1 1.e-09 3 2.8147e-15 6 1.4222e-14
1.1 1.e-10 3 5.1257e-15 7 4.4492e-15
1.1 1.e-11 3 2.6859e-15 6 6.2115e-15
1.1 0 3 2.5680e-15 7 3.5907e-14

1.01 1.e-08 8 4.9308e-14 56 1.0840e-12
1.01 1.e-09 7 8.1987e-14 52 9.4457e-13
1.01 1.e-10 7 7.1116e-14 53 9.3774e-13
1.01 1.e-11 8 2.4877e-14 54 1.0526e-12
1.01 0 9 5.5088e-14 62 9.8569e-13

1.001 1.e-08 42 2.1386e-12 150 1.0049e-05
1.001 1.e-09 44 1.4742e-12 150 1.7350e-05
1.001 1.e-10 2 3.8007e+00 2 3.8007e+00
1.001 0 2 3.8007e+00 2 3.8007e+00

MEX external interface.

Our experiments are performed on a large set of random matrices generated by the two models described

in Section 5.1. The compared quantities are CPU time, the number of matrix-vector multiplications and

the solution quality. For LMSVD, each evaluation of the product AATX is counted as 2k matrix-vector

multiplications where k is the number of columns in X defined by (38). Solution quality is measured by the

relative error (in 2-norm) of the r computed dominant singular values against their most accurate available

values. For matrices generated by Model 1, the exact singular values are known to begin with. For matrices

generated by Model 2 where exact solutions are not known, relative errors are calculated with respect to the

solutions of EIGS for all algorithms other than EIGS.

In all the experiments throughout this section, EIGS and LOBPCG are invoked with their default param-

eters. For LANSVD, however, we have observed that its performance in large-decay cases can be improved

if its parameter “lanmax” is set to 2r, while the default value is more appropriate in small-decay cases.

Therefore, in order to obtain better results from LANSVD, we use the default value for the parameter “lan-

max” if β < 1.1 and the value 2r otherwise.

The first experiment is to evaluate the algorithms with different stopping tolerance values, with the goal

of finding a proper tolerance value to be used in later experiments. Generally speaking, when considering a

group of algorithms, the relationship between tolerance and solution quality can be complicated due to the

existence of multiple factors affecting individual algorithms. For this test, we construct four examples, using

Model 1 so that the exact singular values are known, with size parameters (m,n, r, β) set to, respectively,

(2000, 4000, 40, 1.01), (2000, 4000, 80, 1.01), (2000, 4000, 40, 1.1) and (4000, 4000, 40, 1.01). We will

call them test cases 1 to 4. The results on relative error are presented in Figure 4, where in each plot the

horizontal axis represents tolerance value varying from 10−4 to 10−12.

We observe from Figure 4 that the accuracy of EIGS is insensitive to tolerance value in the testes cases,

always achieving the machine precision even with the largest tolerance value 10−4. Although other three

algorithms demonstrate differently sensitivity, they all achieve a precision of order 10−15 with tolerance

LIMITED MEMORY BLOCK KRYLOV SUBSPACE OPTIMIZATION 22

Figure 4: Relationship between tolerance and relative error.

4 6 8 10 12
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

Tolerance: −log10(ε)

R
e

la
tiv

e
 E

rr
o

r

matrix size: 2000 x 4000; r = 40; β = 1.01

LMSVD

SSI

SSI+C

LANSVD

LOBPCG

EIGS

(a) test case 1 (small decay)

4 6 8 10 12
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

Tolerance: −log10(ε)

R
e

la
tiv

e
 E

rr
o

r

matrix size: 2000 x 4000; r = 80; β = 1.01

LMSVD

SSI

SSI+C

LANSVD

LOBPCG

EIGS

(b) test case 2 (small decay)

4 6 8 10 12
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

Tolerance: −log10(ε)

R
e

la
tiv

e
 E

rr
o

r

matrix size: 2000 x 4000; r = 40; β = 1.1

LMSVD

SSI

SSI+C

LANSVD

LOBPCG

EIGS

(c) test case 3 (large decay)

4 6 8 10 12
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

Tolerance: −log10(ε)

R
e

la
tiv

e
 E

rr
o

r

matrix size: 4000 x 4000; r = 40; β = 1.01

LMSVD

SSI

SSI+C

LANSVD

LOBPCG

EIGS

(d) test case 4 (small decay)

value 10−10. Therefore, we will use 10−10 as the default tolerance value for LMSVD, SSI+C, LANSVD

and LOBPCG in the rest of the paper.

In addition, since SSI+C clearly outperforms SSI in all tested instances, not only in terms of accuracy as

shown in Figure 4, but also in terms of CPU time and the number of matrix-vector multiplications that we

are showing here, we will exclude SSI from further comparisons presented hereinafter.

We next evaluate the remaining five solvers in the following three types of randomly generated scenarios

constructed by Model 2:

Type I. For each m ∈ {1000, 2000, . . . , 6000}, set m = n, the decay rate parameter, see (44), β = 1.01

and the number of computed singular values r = 0.03m. The experiment is repeated for β = 1.1.

Type II. Set (m,n) = (2000, 4000), β = 1.01, and vary r from 0.01m to 0.06m. The experiment is

repeated for β = 1.1.

Type III. Set (m,n) = (2000, 4000), r = 60, and let β = 1.01 + 0.03i for i = 0, 1, · · · , 5.

Comparison results from the above three groups of tests are given in Figures 5, 6 and 7, respectively.

The following observations should be clear.

• All solvers achieved a good accuracy of 10−12 except for one case where LOBPCG failed to do so.

• The two Lanczos-based solvers EIGS and LANSVD generally requires less matrix-vector multipli-

cations than the three subspace-iteration based solvers LMSVD, SSI+C and LOBPCG, though this

LIMITED MEMORY BLOCK KRYLOV SUBSPACE OPTIMIZATION 23

Figure 5: Comparison with varying matrix dimension (Type I)

1000 2000 3000 4000 5000 6000
10

−1

10
0

10
1

10
2

Size of square matrix

C
P

U
 t

im
e

β = 1.01; r = 0.03*m

LMSVD

SSI+C

LANSVD

LOBPCG

EIGS

(a) CPU time: β = 1.01

1000 2000 3000 4000 5000 6000
10

−16

10
−15

10
−14

10
−13

Size of square matrix

R
e

la
tiv

e
 e

rr
o

r
w

rt
.

th
e

 s
o

lu
tio

n
s

o
f

E
IG

S

β = 1.01; r = 0.03*m

LMSVD

SSI+C

LANSVD

LOBPCG

(b) relative error: β = 1.01

1000 2000 3000 4000 5000 6000
10

2

10
3

10
4

10
5

Size of square matrix

N
u

m
b

e
r

o
f

m
a

tr
ix

−
ve

ct
o

r
m

u
lti

p
lic

a
tio

n
s

β = 1.01; r = 0.03*m

LMSVD

SSI+C

LANSVD

LOBPCG

EIGS

(c) Matrix-vector multiplications

1000 2000 3000 4000 5000 6000
10

−2

10
−1

10
0

10
1

10
2

Size of square matrix

C
P

U
 t

im
e

β = 1.1; r = 0.03*m

LMSVD

SSI+C

LANSVD

LOBPCG

EIGS

(d) CPU time: β = 1.1

1000 2000 3000 4000 5000 6000
10

−16

10
−14

10
−12

10
−10

10
−8

Size of square matrix

R
e

la
tiv

e
 e

rr
o

r
w

rt
.

th
e

 s
o

lu
tio

n
s

o
f

E
IG

S

β = 1.1; r = 0.03*m

LMSVD

SSI+C

LANSVD

LOBPCG

(e) relative error: β = 1.1

1000 2000 3000 4000 5000 6000
10

2

10
3

10
4

Size of square matrix

N
u

m
b

e
r

o
f

m
a

tr
ix

−
ve

ct
o

r
m

u
lti

p
lic

a
tio

n
s

β = 1.1; r = 0.03*m

LMSVD

SSI+C

LANSVD

LOBPCG

EIGS

(f) Matrix-vector multiplications

advantage does not necessarily mean a higher efficiency in CPU time.

• Relatively speaking, small-decay cases are more favorable to the Lanczos-based solvers, while large-

decay cases more favorable to the subspace-iteration based solvers.

In terms of the performance of LMSVD, we can safely make the following observations.

• On large-decay matrices, LMSVD takes as few iterations as SSI+C (though iteration number is not

presented here), while on small-decay matrices when SSI+C and LOBPCG become really slow,

LMSVD remains competitive with EIGS and LANSVD.

• In all the test instances of small or large decay, the time efficiency of LMSVD is always close to the

best, if not the best by itself, among the five tested solvers.

As is noted, when one matrix-block multiplicationAATX is counted as k matrix-vector multiplications,

the two Lanczos-iteration based solvers, EIGS and LANSVD, require considerably fewer matrix-vector

multiplications. Even so, LMSVD can still be be faster in terms of CPU time. Presumably, this has to do with

memory access patterns in a memory hierarchy of modern computer architecture which is in favor of doing

one matrix-block multiplication at once than doing k individual matrix-vector multiplications sequentially.

In addition, block matrix multiplications facilitate the use of high efficiency level 3 BLAS subroutines in the

linear algebra package LAPACK [1] used by Matlab.

An known advantage of subspace-iteration based algorithms over Lanczos based ones is that the former

can easily benefit from a good warm starts, whenever available. To demonstrate this, we construct a sequence

LIMITED MEMORY BLOCK KRYLOV SUBSPACE OPTIMIZATION 24

Figure 6: Comparison with varying number of computed singular values (Type II)

20 40 60 80 100 120

10
0.2

10
0.4

10
0.6

10
0.8

Number of dominant singular values computed, r

C
P

U
 t

im
e

matrix size: 2000 x 4000; β = 1.01

LMSVD

SSI+C

LANSVD

LOBPCG

EIGS

(a) CPU time: β = 1.01

20 40 60 80 100 120
10

−15

10
−14

10
−13

Number of dominant singular values computed, r

R
e

la
tiv

e
 e

rr
o

r
w

rt
.

th
e

 s
o

lu
tio

n
s

o
f

E
IG

S

matrix size: 2000 x 4000; β = 1.01

LMSVD

SSI+C

LANSVD

LOBPCG

(b) Relative error: β = 1.01

20 40 60 80 100 120
10

2

10
3

10
4

Number of dominant singular values computed, r

N
u

m
b

e
r

o
f

m
a

tr
ix

−
ve

ct
o

r
m

u
lti

p
lic

a
tio

n
s

matrix size: 2000 x 4000; β = 1.01

LMSVD

SSI+C

LANSVD

LOBPCG

EIGS

(c) Matrix-vector multiplications

20 40 60 80 100 120

10
0

Number of dominant singular values computed, r

C
P

U
 t

im
e

matrix size: 2000 x 4000; β = 1.1

LMSVD

SSI+C

LANSVD

LOBPCG

EIGS

(d) CPU time: β = 1.1

20 40 60 80 100 120
10

−16

10
−15

10
−14

10
−13

10
−12

Number of dominant singular values computed, r

R
e

la
tiv

e
 e

rr
o

r
w

rt
.

th
e

 s
o

lu
tio

n
s

o
f

E
IG

S

matrix size: 2000 x 4000; β = 1.1

LMSVD

SSI+C

LANSVD

LOBPCG

(e) Relative error: β = 1.1

20 40 60 80 100 120
10

1

10
2

10
3

10
4

Number of dominant singular values computed, r

N
u

m
b

e
r

o
f

m
a

tr
ix

−
ve

ct
o

r
m

u
lti

p
lic

a
tio

n
s

matrix size: 2000 x 4000; β = 1.1

LMSVD

SSI+C

LANSVD

LOBPCG

EIGS

(f) Matrix-vector multiplications

of 2000 by 4000 matrices, starting from a random matrixA(1) generated with β = 1.01 and each subsequent

matrix taking the form of A(j+1) = A(j) + 1
5j+1

W (j)

‖W (j)‖F
, for j = 1, · · · , 14, where W (j) is a random matrix

with i.i.d. standard Gaussian elements. For the three subspace-iteration based algorithms, at each step, we

set the initial guess as the output of the previous step. The results are plotted in Figure 8. As we can see, as

the sequence ”converges”, the cost of solving each problem generally decreases for the subspace-iteration

based algorithms, while it remains flat for EIGS and LANSVD.

Finally, we present an overall evaluation of the five solvers using performance profiles introduced by

Moré and Dolan [5]. These profiles provide a way to graphically compare a performance quantity, say tp,s
representing the number of iterations or CPU time required by solver s to solve problem p for a group of

solvers on a set of test problems.

Let us define rp,s to be the ratio between the quantity tp,s, obtained on problem p by solver s, over the

lowest such quantity obtained by any of the solvers on problem p, i.e., rp,s := tp,s/mins{tp,s}. Whenever

solver s fails to solve problem p, the ratio rp,s is set to infinity or some sufficiently large number. Then, for

τ ≥ 0, the ratio

πs(τ) :=
number of problems where rp,s ≤ τ

total number of problems

is the fraction of the test problems that were solved by solver s within a factor τ ≥ 1 of the performance

obtained by the best solver. The performance plots present πs(τ) for each solver s as a function of τ . The

curves are always monotonically nondecreasing, and the closer a curve to the unity, the better.

In this experiment, 540 test matrices are generated using Model 2. The sizes of the test matrices are

LIMITED MEMORY BLOCK KRYLOV SUBSPACE OPTIMIZATION 25

Figure 7: Comparison with varying decay parameter β (Type III)

1 1.05 1.1 1.15 1.2

10
0

Dominant singular values decaying parameter, β

C
P

U
 t

im
e

matrix size: 2000 x 4000; r = 60

LMSVD

SSI+C

LANSVD

LOBPCG

EIGS

(a) CPU time in seconds

1 1.05 1.1 1.15 1.2
10

−16

10
−15

10
−14

10
−13

10
−12

Dominant singular values decaying parameter, β

R
e

la
tiv

e
 e

rr
o

r
w

rt
.

th
e

 s
o

lu
tio

n
s

o
f

E
IG

S

matrix size: 2000 x 4000; r = 60

LMSVD

SSI+C

LANSVD

LOBPCG

(b) Relative error

1 1.05 1.1 1.15 1.2
10

2

10
3

10
4

Dominant singular values decaying parameter, β

N
u

m
b

e
r

o
f

m
a

tr
ix

−
ve

ct
o

r
m

u
lti

p
lic

a
tio

n
s

matrix size: 2000 x 4000; r = 60

LMSVD

SSI+C

LANSVD

LOBPCG

EIGS

(c) Matrix-vector multiplications

Figure 8: warm start.

1 2 3 4 5 6

10
0

Matrix sequence

C
P

U
 t

im
e

matrix size: 2000 x 4000; r = 40; β = 1.01

LMSVD

SSI+C

LANSVD

LOBPCG

EIGS

(a) CPU time in seconds

1 2 3 4 5 6
10

−15

10
−14

10
−13

10
−12

Matrix sequence

R
e

la
tiv

e
 e

rr
o

r
w

rt
.

th
e

 s
o

lu
tio

n
s

o
f

E
IG

S

matrix size: 2000 x 4000; r = 40; β = 1.01

LMSVD

SSI+C

LANSVD

LOBPCG

(b) Relative error

1 2 3 4 5 6
10

2

10
3

10
4

Matrix sequence
N

u
m

b
e

r
o

f
m

a
tr

ix
−

ve
ct

o
r

m
u

lti
p

lic
a

tio
n

s

matrix size: 2000 x 4000; r = 40; β = 1.01

LMSVD

SSI+C

LANSVD

LOBPCG

EIGS

(c) Matrix-vector multiplications

(m,n) where m ranges from 2000 to 6000 increment 1000, and n ranges from m to 6000 increment 1000

as well. Hence, there are 15 types of matrix shapes. For each of these matrices, we let r range from 0.01m

to 0.06m increment 0.01m, and β range from 1.01 to 1.15 increment 0.03. In total, this procedure generates

15 ∗ 6 ∗ 6 = 540 matrices.

Performance profiles on CPU time and the number of matrix-vector multiplications are given in Figure

9. Plot (a) on the left show that, on the 540 tested problems, (i) LMSVD is the best performer in terms of

CPU time, and (ii) it always solved problems in no more than twice of the fastest time among the five solvers.

On the other hand, plot (b) shows that both EIGS and LANSVD require fewer matrix-vector multiplications

than LMSVD does, while LMSVD uses fewer matrix-vector multiplications than the other two subspace-

iteration based algorithms SSI+C and LOBPCG.

In addition, the average relative error with respect to the solutions obtained by EIGS over the 540 test

problems are reported in Table 2.

5.4 Performance comparison on an application problem

In this subsection, we test the performance of LMSVD on problems from robust principal component pur-

suit, which is a recent technique with potential applications in image and video analysis and other applica-

LIMITED MEMORY BLOCK KRYLOV SUBSPACE OPTIMIZATION 26

Figure 9: Performance profile

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

π
s
(τ

)

Performance profile of 540 matrices on CPU time

LMSVD

SSI+C

LANSVD

LOBPCG

EIGS

(a) CPU time

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

π
s
(τ

)

Performance profile of 540 matrices on matrix−vector multiplications

LMSVD

SSI+C

LANSVD

LOBPCG

EIGS

(b) the number of matrix-vector multiplications

Table 2: Average relative error with respect to EIGS

LMSVD SSI+C LANSVD LOBPCG

6.5675e-015 9.3449e-015 9.7473e-015 6.5973e-014

tions where data is either incomplete or corrupted. Specifically, the problem is to separate a low-rank matrix

L0 and a sparse matrix S0 from their given sum D = L0 +S0 ∈ Rm×n. It has been shown in [3] that, under

some suitable conditions, its solution can be found by solving the convex optimization problem:

min
L,S∈Rm×n

‖L‖∗ + µ‖S‖1 s.t. L+ S = D, (45)

where µ > 0 is a proper weighting factor, ‖L‖∗ is the nuclear norm of L (the sum of its singular values) and

‖S‖1 is the sum of the absolute values of all entries of S (not the matrix 1-norm).

There are a number of methods proposed for solving (45), such as the exact and inexact augmented

Lagrange multiplier (ALM and IALM) algorithms proposed in [15] and [29], respectively. However, no

matter what method is used to solve (45), the main cost is the computation of the dominant SVD of certain

matrices related to the nuclear norm term. Here we study how the performance of the IALM solver changes

as its default SVD solver LANSVD is replaced by another SVD solver, in particular by LMSVD.

We first test the algorithms on matrices of the form D = L0 + S0, where L0 is rank-r and S0 is

sparse. Specifically, L0 = XY T, where X and Y are n × r i.i.d. standard Gaussian random matrices;

S0 = τ S̃, where S̃ is a sparse matrix whose nonzero positions are uniformly sampled and nonzero element

values are independently chosen from the standard Gaussian distribution with variance 1/n, and τ is a

scalar which makes S0 roughly the same magnitudes as L0. The sizes of the test matrices are m = n =

LIMITED MEMORY BLOCK KRYLOV SUBSPACE OPTIMIZATION 27

500, 1000, 1500, ..., 4000. We test two groups of test problems. In each of them, the rank ratio parameter

τr , r/n and the density parameter τs , nnz(S0)/n
2 are set to (0.05, 0.10) and (0.10, 0.05), respectively.

In all cases, the balancing parameter µ is fixed as 1/n.

We run IALM with four SVD solvers, LMSVD, LANSVD, EIGS and LOBPCG on the first group of

test problems, and with the first three solvers on the second group, excluding LOBPCG due to a runtime

error message it gives. Since all solvers achieved a very similar accuracy, we only summarize the CPU time

results in Figure 10. We observe that using LMSVD in IALM reduces the CPU time by 30-50% comparing

to using LANSVD. The performance of IALM using EIGS is similar to that of using LANSVD, while the

results of using LOBPCG are not competitive.

Figure 10: CPU time results on randomly generated matrix separation problems.

500 1000 1500 2000 2500 3000 3500 4000
0

200

400

600

800

1000

1200

1400

Size of square matrix

C
P

U
 t

im
e

τ
r
 = 0.05; τ

s
 = 0.1

LMSVD

LANSVD

LOBPCG

EIGS

(a) CPU time (group 1)

500 1000 1500 2000 2500 3000 3500 4000
0

200

400

600

800

1000

1200

Size of square matrix

C
P

U
 t
im

e

τ
r
 = 0.1; τ

s
 = 0.05

LMSVD

LANSVD

EIGS

(b) CPU time (group 2)

We next consider the case of recovering an image (as an approximate low-rank matrix) from its sum

with a sparse random matrix. We test two images: a rank-2 image “checkerboard” of size 512 × 512

and an approximately low-rank image “brickwall” of size 772 × 1165, shown in Figures 11 (a) and (b),

respectively. The images are corrupted by adding a sparse matrix whose nonzero entries take random values

uniformly distributed in [0, 1] and the locations of the nonzero entries are uniformly random. The density

level nnz(S∗)/m2 was set to 5%. On each these problems, IALM calls a SVD solver about 18 times. Table

3 reports the average number of singular values, denoted by “av.dsv”, computed at each iteration, the relative

error, denoted by “rel.err”, of the recovered image, and the CPU time used. The recovered images by IALM

with LMSVD are depicted in Figures 11 (a) and (b). Since the recovered images with other SVD solvers are

almost visually identical, they are not included here for the sake of space.

Problem Name IALM+LMSVD IALM+LANSVD IALM+LOBPCG IALM+EIGS
av.dsv rel.err CPU av.dsv rel.err CPU av.dsv rel.err CPU av.dsv rel.err CPU

checkerboard 59.0 0.23 2.95 59.0 0.23 7.91 59.0 0.23 7.09 59.0 0.23 3.42
brickwall 76.8 0.29 10.78 76.8 0.29 23.55 76.8 0.29 22.43 76.8 0.29 17.05

video-hall 56.4 - 23.74 56.4 - 39.72 56.4 - 115.68 56.4 - 53.64

Table 3: image restoration and video separation

Finally, with different SVD solvers we apply IALM to a video separation problem in [3], which aims

to separate a video into a static background and moving objects. Every frame of a video is reshaped into a

LIMITED MEMORY BLOCK KRYLOV SUBSPACE OPTIMIZATION 28

long column vector and then collected into a matrix. As such, the number of rows in the matrix equals to

the number of pixels and the number of columns equals to the number of frames in a video. We take only

part of the clip with 500 frames to reduce the storage and computation required, resulting in a 25344× 500

matrix separation problem. In this test, IALM needs to call a SVD solver 7 times. The average number of

dominant SVD computed at each iteration and the CPU time are again included in Table 3 as the last row.

We observe that IALM with LMSVD requires the least amount of CPU time than with other solvers. A few

recovered frames by IALM with LMSVD are given in Figure 11.

6 Conclusions

We propose and study a limited memory subspace optimization technique to accelerate the classical simul-

taneous subspace iteration (SSI) method for computing truncated singular value decompositions (SVDs) of

large and unstructured matrices. The main idea is to introduce an intermediate iterate which maximizes

the Rayleigh-Ritz function in a subspace spanned by a few previous iterates without introducing any ex-

tra matrix-block multiplication. A stable algorithm is constructed to produce high precision solutions if so

specified, and a general convergence result is established based on minimal assumptions.

Comprehensive numerical experiments are conducted to evaluate the performance of our new truncated

SVD solver LMSVD in comparison to a few state-of-the-art solvers. Numerical results indicate that LMSVD

does accelerate SSI (or SSI plus Chebyshev acceleration) significantly to a point where its performance

becomes competitive, ofter superior, to the best publicly available solvers on a wide range of unstructured

matrices under the MATLAB environment. We hope that LMSVD will become a new addition to the

computational toolbox useful in data-intensive applications.

Finally, we opine that on unstructured matrices an SSI-based solver like LMSVD, rich in level 3 BLAS

operations, offers a greater opportunity to be efficiently parallelized on massively parallel computers than

that offered by solvers based on Lanczos iterations.

References

[1] E. ANDERSON, Z. BAI, J. DONGARRA, A. GREENBAUM, A. MCKENNEY, J. DU CROZ, S. HAM-

MERLING, J. DEMMEL, C. BISCHOF, AND D. SORENSEN, Lapack: a portable linear algebra library

for high-performance computers, in Proceedings of the 1990 ACM/IEEE conference on Supercomput-

ing, Supercomputing ’90, IEEE Computer Society Press, 1990, pp. 2–11.

[2] M. BOLLHÖFER AND Y. NOTAY, JADAMILU: a software code for computing selected eigenvalues of

large sparse symmetric matrices, Comput. Phys. Comm., 177 (2007), pp. 951–964.

[3] E. J. CANDÈS, X. LI, Y. MA, AND J. WRIGHT, Robust principal component analysis?, J. ACM, 58

(2011), pp. 1– 37.

[4] Y. DAI, Fast algorithms for projection on an ellipsoid, SIAM J. Optim., 16 (2006), pp. 986–1006.

LIMITED MEMORY BLOCK KRYLOV SUBSPACE OPTIMIZATION 29

Figure 11: Image restoration and video separation problems.

original image noisy image, 40% pixels corrupted recovered by IALM with LMSVD

(a) Recovery results for “checkboard”

original image noisy image, 40% pixels corrupted recovered by IALM with LMSVD

(b) Recovery results for “brick wall”

original frame background moving objects

(c) Video separation by IALM with LMSVD

LIMITED MEMORY BLOCK KRYLOV SUBSPACE OPTIMIZATION 30

[5] E. D. DOLAN AND J. J. MORÉ, Benchmarking optimization software with performance profiles, Math.

Program., 91 (2002), pp. 201–213.

[6] P. DRINEAS, R. KANNAN, AND M. W. MAHONEY, Fast Monte Carlo algorithms for matrices. II.

Computing a low-rank approximation to a matrix, SIAM J. Comput., 36 (2006), pp. 158–183.

[7] G. H. GOLUB AND C. F. VAN LOAN, Matrix computations, Johns Hopkins Studies in the Mathemat-

ical Sciences, Johns Hopkins University Press, Baltimore, MD, third ed., 1996.

[8] N. I. M. GOULD, D. ORBAN, AND P. L. TOINT, Numerical methods for large-scale nonlinear opti-

mization, Acta Numerica, (2005), pp. 299–361.

[9] N. HALKO, P. G. MARTINSSON, AND J. A. TROPP, Finding structure with randomness: Probabilistic

algorithms for constructing approximate matrix decompositions, SIAM Rev., 53 (2011), pp. 217–288.

[10] V. HERNÁNDEZ, J. E. ROMÁN, A. TOMÁS, AND V. VIDAL, A survey of software for sparse eigen-

value problems, tech. rep., Scalable Library for Eigenvalue Problem Computations, 2009.

[11] A. V. KNYAZEV, Toward the optimal preconditioned eigensolver: locally optimal block precondi-

tioned conjugate gradient method, SIAM J. Sci. Comput., 23 (2001), pp. 517–541.

[12] R. M. LARSEN, Lanczos bidiagonalization with partial reorthogonalization, Aarhus University, Tech-

nical report, DAIMI PB-357, September 1998.

[13] R. B. LEHOUCQ, Implicitly restarted Arnoldi methods and subspace iteration, SIAM J. Matrix Anal.

Appl., 23 (2001), pp. 551–562.

[14] R. B. LEHOUCQ, D. C. SORENSEN, AND C. YANG, ARPACK users’ guide: Solution of large-scale

eigenvalue problems with implicitly restarted Arnoldi methods, vol. 6 of Software, Environments, and

Tools, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998.

[15] Z. LIN, M. CHEN, L. WU, AND Y. MA, The augmented lagrange multiplier method for exact recovery

of a corrupted low-rank matrices. Mathematical Programming, submitted, 2009.

[16] H. RUTISHAUSER, Computational aspects of F. L. Bauer’s simultaneous iteration method, Numer.

Math., 13 (1969), pp. 4–13.

[17] H. RUTISHAUSER, Simultaneous iteration method for symmetric matrices, Numer. Math., 16 (1970),

pp. 205–223.

[18] Y. SAAD, Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems, Mathe-

matics of Computation, 42 (1984), pp. 567–588.

[19] Y. SAAD, Numerical Methods for Large Eigenvalue Problems, Manchester University Press, 1992.

[20] Y. SAAD, J. R. CHELIKOWSKY, AND S. M. SHONTZ, Numerical methods for electronic structure

calculations of materials, SIAM Rev., 52 (2010), pp. 3–54.

LIMITED MEMORY BLOCK KRYLOV SUBSPACE OPTIMIZATION 31

[21] D. C. SORENSEN, Implicitly restarted Arnoldi/Lanczos methods for large scale eigenvalue calcula-

tions, in Parallel numerical algorithms (Hampton, VA, 1994), vol. 4 of ICASE/LaRC Interdiscip. Ser.

Sci. Eng., Kluwer Acad. Publ., pp. 119–165.

[22] , Numerical methods for large eigenvalue problems, Acta Numer., 11 (2002), pp. 519–584.

[23] A. STATHOPOULOS AND C. F. FISCHER, A davidson program for finding a few selected extreme

eigenpairs of a large, sparse, real, symmetric matrix, Computer Physics Communications, 79 (1994),

pp. 268–290.

[24] G. W. STEWART, Simultaneous iteration for computing invariant subspaces of non-Hermitian matri-

ces, Numer. Math., 25 (1975/76), pp. 123–136.

[25] , Matrix algorithms Vol. II: Eigensystems, Society for Industrial and Applied Mathematics

(SIAM), Philadelphia, PA, 2001.

[26] W. J. STEWART AND A. JENNINGS, A simultaneous iteration algorithm for real matrices, ACM Trans.

Math. Software, 7 (1981), pp. 184–198.

[27] M. TURK AND A. PENTLAND, Eigenfaces for recognition, J. Cognitive Neuroscience, 3 (1991),

pp. 71–86.

[28] C. YANG, J. C. MEZA, AND L.-W. WANG, A trust region direct constrained minimization algorithm

for the Kohn-Sham equation, SIAM J. Sci. Comput., 29 (2007), pp. 1854–1875.

[29] X. YUAN AND J. YANG, Sparse and low-rank matrix decomposition via alternating direction methods,

Pacific Journal of Optimization, (2012).

[30] Y. YUAN, Subspace techniques for nonlinear optimization, in Some topics in industrial and applied

mathematics, vol. 8 of Ser. Contemp. Appl. Math. CAM, Higher Ed. Press, 2007, pp. 206–218.

	Introduction
	Introduction
	Contributions
	Organization
	Notations

	Limited Memory Block Krylov Subspace Optimization
	Motivation and Framework
	Algorithm Details
	LMSVD Algorithm Statement
	Complexity per Iteration

	Convergence Analysis
	Preliminaries
	Convergence of SSI
	Convergence of an accelerated class
	Remarks on the convergence result

	Practical Issues
	Memory Length
	Guard Vectors
	Stopping Rule

	Numerical Experiments
	Random problem generation
	Sensitivity with respect to different parameters
	Performance comparison on random matrices
	Performance comparison on an application problem

	Conclusions

